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Abstract. We consider the application of finite-size scaling methods to simulations of tricritical
phenomena in a two-dimensional symmetrical binary fluid. A simulation strategy is described
which together with the scaling framework enables the accurate determination of both the
universal and non-universal tricritical point properties of the model. The results also provide
insight into the character of the tricritical fluctuations.

The present understanding of fluid phase equilibria owes much to computer simulation
studies. Simulations are valuable because they can provide new insights into the relevant
physical phenomena, and may even lead to new discoveries. They also provide a useful
benchmark for testing analytical theories.

Currently, there is considerable interest in using simulation to study the critical point
regime of fluid systems. The theoretical problems posed by the critical region fall naturally
into two categories. First, one may wish to establish the universality class to which the phase
transition belongs, thereby identifying the values of the universal quantites characterizing the
critical behaviour. Second, one may wish to determine the non-universal critical parameters
of the system, and try to relate them to the interatomic forces.

Before undertaking a serious simulation study of critical phenomena, it is necessary to
have in place a reliable framework for accurately locating the critical point. This necessitates
taking account of finite-size effects, which are particularly pronounced in the critical region
due to the divergent correlation length. Failure to do so can lead to serious errors in
estimates of critical point parameters. For lattice-based spin models, the standard technique
for achieving this is to employ finite-size scaling (FSS) methods [1], which permit estimates
of bulk critical properties from simulations of finite-sized systems. Recently much attention
has also been given to extending FSS techniques to off-lattice fluid models [2–6].

In this paper we describe the application of FSS methods to a simulation study
of tricriticality [7] in a two-dimensional (2D) symmetrical binary fluid model [8].
Experimentally, the phase diagrams of binary fluids exhibit a rich topology, dependent on the
specific forms of the microscopic interactions [9]. For the symmetrical system considered in
this work, however, the two component species posess a special Ising model type symmetry
and it is possible to arrange for the topology shown schematically in figure 1. At high
temperatures there is a line of second-order demixing transitions, while at low temperature
there is a (triple) line of first-order liquid–vapour transitions. The two lines of transitions
meet one another at the liquid–vapour critical point, which is thus a tricritical point.

The particular model we consider is a 2D symmetrical square-well fluid in which the
two particle species A and B interact with one another via the potential:

0953-8984/96/479637+05$19.50c© 1996 IOP Publishing Ltd 9637



9638 N B Wilding

Figure 1. A schematic phase
diagram of a symmetrical binary
fluid in the T –ρ plane.

U(r) = ∞ r < σ

U(r) = − J σ 6 r 6 1.5σ (1)

U(r) = 0 r > 1.5σ

with JAA = JBB = −JAB = J > 0. Owing to the symmetry of this potential with respect
to A–A and B–B interactions, the phase diagram is symmetric with respect to positive
and negative values of the chemical potential differenceµA − µB. Also by virtue of this
symmetry, there is a tricritical point which lies in the symmetry planeµA = µB of the
phase diagram.

Monte Carlo simulations of this model were performed in the grand canonical (constant-
µV T ) ensemble, and both particle transfers (insertions and deletions) and identity changes
(A → B, B → A) were implemented. To locate the tricritical point, the approach
adopted was to study the FSS properties of the scaling operator distributions along the
first-order line of liquid–vapour coexistence. In general, owing to the lack of symmetry
between the coexisting phases, these operators will comprise linear combinations of the
bare physical observables [5], namely the particle densityρ, the energy densityu and
the excess concentrationψ = (NA − NB)/V . For the symmetric binary fluid, the scaling
operators on which we shall focus are

M ∼ ψ
D ∼ ρ − su

(2)

wheres is a non-universal ‘field mixing’ parameter, which controls the degree to which the
energy and density fluctuation couple to one another [5].

Precisely at tricriticality, the probability distribution functions of the scaling operators
are expected to be both universal and scale invariant. This scale invariance can be exploited
to locate the tricritical point using the cumulant intersection method [11]. The fourth-order
cumulant ratio,UL, is a quantity that characterizes the form of a distribution, and is defined
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in terms of the fourth and second moments of a given distribution:

UL = 1 − 〈m4〉
3〈m2〉2

. (3)

At criticality, the value ofUL should become independent of the system size.
We have studied the behaviour ofUL for the operator distributionpL(D), along the

liquid–vapour coexistence curve and its analytical extension. Simulations were carried
out at a reduced temperature ofkBT /J = 0.58, and the histogram reweighting technique
[10] was used to estimateUL(T ) for other temperatures along the coexistence curve. The
results are shown in figure 2 for three system sizes. The data exhibit a clear crossing at
kBT /J = 0.581(1), which we therefore adopt as our estimate of the tricritical temperature.
The associated estimate for the tricritical chemical potential isµ/kBT = −1.916(2).

Figure 2. The measured cumulant ratioUD
L for each of the three system sizesL = 18σ, 24σ

and 30σ along the first-order line and its analytic extension.

The distributionspL(D) and pL(M), at the designated values of the tricritical
parameters, are shown in figure 3. Also shown are the corresponding tricritical distributions
of the 2D spin-1 Blume–Capel model (obtained in a separate study [8]), to whose universality
class the 2D binary fluid is expect to belong. Clearly, in each instance and for each system
size, the operator distributions collapse extremely well onto one another as well as onto
those of the tricritical Blume–Capel model. This data collapse therefore constitutes strong
evidence for fluid-magnet universality. The values of the tricritical exponents can also be
extracted from the FSS properties of the operator distributions, and are found to agree well
with the exact values known from conformal invariance calculations [8].

The forms of the scaling operator distributions also convey insight into the nature of
the tricritical fluctuations. In particular, it is noteworthy that thethree-peakedform of
pL(M) differs from the universal magnetization distribution of the 2D critical Ising model,
which is stronglydouble-peaked in two dimensions [11, 12]. The existence of a three-
peaked structure for tricritical phenomena reflects the additional coupling that arises between
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Figure 3. The tricritical scaling operator distributions for the three system sizesL = 18σ, 24σ
and 30σ . (a) p̃?

L(M), (b) p̃?
L(D). Also shown for comparison are the corresponding tricritical

distributions for the 2D Blume–Capel (BC) model. All distributions are expressed in terms of
the scaling variablea−1

i Ld−yi (O − Oc) and are scaled to unit norm and variance. Statistical
errors do not exceed the symbol sizes.

the density and concentration fluctuations. Specifically, the central peak corresponds
to fluctuations to small density which are concomitant with an overall reduction in the
magnitude of the excess concentration. Were one, however, to depart from the tricritical
point along the critical demixing line, these density fluctuations would gradually die out
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and a crossover to a distribution having the double-peaked Ising form would be expected.
In conclusion, we have seen that the simulation and FSS framework together enables the

accurate determination of both the universal and non-universal critical point properties for
model fluids. It would now be interesting to try to apply similar techniques to investigate
some of the many outstanding questions concerning fluid universality in more complex fluid
systems such as ionic or polymeric liquids.
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